

| Session             | <b>Emerging Innovative Technologies: Novel Fermentation and</b> |
|---------------------|-----------------------------------------------------------------|
|                     | Downstream Processing Innovations                               |
| Title               | Pioneering the use of sound as a new lever in biology           |
| Company             | HypeSound                                                       |
| Speaker             | Dr Johnny Drain - CEO                                           |
| Keywords feedstock  | Microbes                                                        |
| (max 2)             | Bioreactors                                                     |
| Keywords technology | Acoustic-bioprocessing                                          |
| (max 2)             | AI/ML                                                           |
| Keywords            | Biomass yield                                                   |
| End-Product (max 2) | Bioproducts                                                     |
|                     |                                                                 |

## **Abstract:**

HypeSound is introducing sound as a programmable input for cells, opening a new dimension of control in fermentation and bioprocessing. Our platform applies low-frequency acoustic stimulation to enhance microbial and cellular productivity — increasing yields, accelerating growth, and improving product purity without additives, genetic modification or invasive probes.

We combine retrofit acoustic hardware with an Al-driven control layer, enabling real-time optimisation across algae, yeast, bacteria, and mammalian systems.

By turning sound into a scalable, GMP-compatible bioprocess lever, HypeSound addresses one of biotechnology's biggest bottlenecks: unlocking higher performance from existing fermentation infrastructure. This breakthrough paves the way for more efficient biomanufacturing across food, feed, biomaterials, and biopharma.

Early trials show +320% increase in microalgae productivity and improved purity from 70% to 95%, delivering modelled 40–60% reductions in cost per kilo.